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SolarProminenceEruption

1. Introduction

The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and

corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the

magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of

their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with

the term "prominence eruption." The magnetic field holding a filament is prone to undergo explosive changes

in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride

with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the

magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament

eruption, the topic of this article. Figure 1 shows a filament eruption in progress, exploding up into the corona.

This article begins with a description of basic observed characteristics of filament eruptions, with attention

to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The

present understanding of these characteristics in terms of the form and action of the magnetic field is then laid

out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that

this picture leaves unresolved and with remarks on the observations needed to probe these questions.

2. Observed Characteristics

Every stationary filament, whether or not it eventually erupts, stands over and tracks a neutral line (i.e., a

polarity dividing line) in the photospheric magnetic flux. The width of the opposite polarity flux areas

bracketing the neutral line is typically considerably greater than the height of the filament, and coronal images



showamagneticarcaderootedin the opposite polarities and arching high over the filament. That is, the

filament is centered low in the tunnel of the coronal arch of the overall bipole, suspended in the core field, the

field that is rooted near the neutral line and closely envelops the neutral line. The filament and substructure

striations within the filament run nearly parallel to the neutral line. This shows that the core field threading

the filament runs nearly parallel to the neutral line rather than arching right over the neutral line as it would if

it were near its relaxed, minimum-energy potential configuration. In contrast to the core field, the loops of the

overall arch of the bipole are more nearly orthogonal to the neutral line. Thus, the form of the filament and its

location within the bipole show that the core field is greatly deformed from the potential configuration, being

sheared so that it stretches along the neutral line, and that the core field is more strongly sheared than is the

field farther out in the envelope of the bipole.

In a filament eruption, the active agent is the core field in and around the filament; it is the core field that

explodes, exploding both itself and the filament that it carries. Thus, the size of a filament eruption is set by

the length of the sheared core field traced by the filament at eruption onset. This length is a measure of the

overall size of the closed magnetic bipole in which the filament and sheared core field are seated. Accordingly,

the range of sizes of filament eruptions is more or less the range of the lengths of filaments found on the Sun,

and this is roughly the range in the size of magnetic bipoles that occur on the Sun. This range extends from as

large as half a solar radius (_ 300,000 km) to as small or smaller than the larger bipoles found in the magnetic

network (<-.- 10,000 km). The magnetic bipoles forming active regions with sunspots, and the filament

eruptions in these regions, are usually medium sized, typically _- 30,000 km, but ranging up to as large as

100,000 km at eruption onset. The filament eruption in Figure 1 is seated in an active region and is larger than

average: the erupting filament and sheared core field were initially--. 50,000 km long. Although the largest (in

span) of all filament eruptions do not occur in active regions, the larger of the filament eruptions in active

regions, in particular filament eruptions from between large impacted opposite-polarity sunspots, mark the

Sun's most powerful magnetic explosions. This is so because sunspots have the strongest magnetic fields found

on the Sun, and consequently the sheared core fields between the largest impacted sunspots have the largest

store of nonpotential magnetic energy. The very largest filaments and filament eruptions are in quiet regions,



ontheneutrallinesofthebipolararcadesunderlargecoronalstreamers.Thestrengthofthefilamentcorefield

in theseisonly-_I0 G, a hundred times less than in the most powerful filament eruptions from large sunspot

regions. The eruption of one of these largest quiet-region filaments is spectacular, as in the example shown in

Figure 2, even though the total energy of the explosion is 10 to 100 times less than for the strongest ones in

active regions. While the largest filament eruptions occur in only the largest bipoles, which are all in quiet

regions, small filament eruptions can occur wherever small bipoles occur, which can be within active regions as

well as in quiet regions. However, most of the smallest filament eruptions (from bipoles <-_ 10,000 km across)

occur in quiet regions, due to the ubiquity of such bipoles in the magnetic network. It is likely that many

macrospicules are small (-- 10,000 km) filament eruptions, and this raises the possibility that many spicules

(which are rooted in the network and are similar to macrospicules but smaller) are still smaller filament

eruptions.

There is enough magnetic flux all over the Sun, in all quiet regions as well as in active regions, that the

entire solar atmosphere above the photosphere is permeated with magnetic field strong enough to impose its

structure on the chromosphere and corona. Consequently, none of the bipoles in which filaments and filament

eruptions are seated is totally isolated, but is hemmed in to some degree by adjacent magnetic fields. When

these adjacent fields are weak relative to the eruption bipole, the eruption proceeds about as it would if there

were no adjacent field. Often, some of the adjacent fields, weak or strong, are in other bipoles that have their

own sheared core fields. In these cases, a filament eruption in one bipole can trigger and interact with another

eruption in one or more adjacent bipoles. The morphology and development of these multiple-bipole eruptions

is naturally more complex than in single-bipole events. All of the figures in this article show examples or

models of single-bipole events.

The filament eruption in any one bipole, whether or not it is part of a multiple-bipole eruption, is either

ejective or confined. In an ejective eruption, the erupting core field becomes an expanding, twisted, arched flux

rope, the top of which escapes far out of the originally closed bipole while the ends remain rooted in the

surface. This requires that the envelope of the bipole also eject along with the filament flux rope, the filament



roperidinginside the distending bubble of envelope field. The filament eruptions in Figures 1 and 2 are

ejective. In a confined eruption, there is no distinct formation of a monolithic rising flux rope. Instead, there is

complex eruptive untwisting and restructuring of the core field as the erupting core field undergoes an overall

expansion. The whole eruption is confined and arrested within the enveloping bipole, and the overall magnetic

arch of the bipole remains closed throughout the eruption. Figure 3 shows a confined filament eruption from

beginning to end. This eruption spans the interior of an active region; so it is of average size and is seated in

strong field. As do ejective eruptions, confined filament eruption occur in quiet regions as well as in active

regions, over the same wide range of size and field strength. The factors that dictate whether an eruption is to

be confined or ejective are probably _ifics of the pre-eruption field configuration and the strength of the

envelope field relative to the core field.

Every filament eruption, confined or ejective, is accompanied by increased coronal heating in the bipole in

which it is seated, and every ejective filament eruption, in addition, accompanies the ejection of the corona in

and above the bipole, i.e., is an intrinsic part of a larger surrounding coronal mass ejection, the core of which is

the ejected filament. Figure 4 shows the coronal mass ejection bubble around an ejected quiet-region filament.

The bright twisted loop in the core of the bubble is the filament flux rope from a quiet-region filament eruption

like that in Figure 2, but at a later phase, much farther out in the corona. The corresponding coronal mass

ejections for ejective filament eruptions from active regions are similar in overall form to those from quiet

regions, but usually accelerate more rapidly to final speeds that are 2 - 5 times faster (as fast as 1000 - 2000 km

s^- 1). Because these fast ejective filament eruptions are always accompanied by a strong flare in the ejective

bipole, they are aptly called flare sprays. The burst of heating in any large strong-field filament eruption in an

active region produces a major flare in coronal emission, increasing the Sun's total X-ray luminosity by a factor

of 10 to 1000. In these eruptions and in many quiet-region eruptions, the enhanced coronal heating begins in

the erupting core field at eruption onset, rendering this field visible in coronal images. Coronal images during

the onset phase often show the whole core field to have the overall shape of an S or backward S. Later in

ejective eruptions, after the filament flux rope has been ejected far out of the bipole, the coronal images show a

bright, growing coronal arcade straddling the neutral line. In large weak-field ejective eruptions like those in



Figures2and4,thecoronalheatingcanbesoweakastobehardlynoticeablein the global X-ray luminosity,

but is usuallystrong enough to be seen in coronal X-ray images, at least in the post-ejection coronal arcade. In

active-region eruptions the heating also produces flare brightening of the chromosphere at the feet of the field

lines threading the coronal heating. In confined eruptions and early in ejective eruptions, this chromospheric

brightening .o%'urs close along the neutral line under the filament, as the filament erupts (as in Figures 1 and

3). In confined eruptions, coronal images show the filament core field brightening and expanding as it

transforms into an arch standing on the chromospheric brightening, as does the chromospheric arch that

appears in Figure 3 as the eruption ends. In ejective eruptions after the filament is ejected, the chromospheric

flare brightening is in two separating ribbons at the feet of the coronal arcade.

3. Form, Energy, and Action of the Magnetic Field

The filament eruptions in flares and coronal mass ejections, together with magnetograms (maps of the

strength and distribution of the photospheric roots of the magnetic field) reveal that these events are

_damentally magnetic explosions, and that the exploding magnetic field has the following characteristics: (1)

the pre-eruption field is a closed bipole; (2) the field along the neutral line through the core of the bipole is

greatly sheared and has an overall sigmoidal form, so that it traces the neutral line through the bipole and has

oppositely curved elbows on opposite ends; (3)the pre-eruption core field has a large store of nonpotential

magnetic energy; (4) much of this energy is released by the untwisting and expansion of the filament core field

as it erupts; and (5) the released energy is comparable to the total energy expended in the accompanying flare

and/or coronal mass ejection (up to-- 10^32 erg in the largest active-region events). The evidence for the field

configuration and its transformation in the filament-eruption explosion is outlined in the previous section. The

sketches in Figure 5 show the three-dimensional form, action and reconnection of the magnetic field implied by

the observed characteristics of filament eruptions and their observed involvement in flares and coronal mass

ejections. In confined eruptions, the overall bipole remains closed, containing and arresting the eruption within

it. In ejective eruptions, the entire bipole eruptively opens and simultaneously closes via the sequence and



topologyof the reconnection. The expanding ejected filament fltLX rope and envelope field can continue on to

become a coronal mass ejection that blasts out into the solar wind.

4. Current Research

The model sketched in Figure 5 displays, for single-bipole filament eruptions, the typical three-dimensional

form of the magnetic field and its change in topology as it explodes, to the extent that these have been revealed

by the best magnetograms and chromospheric images from the ground together with the best transition-region

and coronal images from space. These observations indicate that reconnection occurs, beginning low in the

sheared core field early in the eruption, but it is not clear why the reconnection starts or whether the

recormection is essential for the explosion. Basic questions left unresolved by present observations are:

1. How does the metastable pre-eruption field configuration originate?

2. How does the configuration destabilize to explode?

3. Is reconnection necessary for either the triggering or the growth of the explosion?

The most needed observations for answering these questions are vector magnetograms of substantially better

sensitivity and spatial resolution than are now possible from the ground. Vector magnetograms provide a direct

measure of the shear in the magnetic field in the photosphere. To probe why and how filaments erupt, the

vector magnetograms need to track the development of the entire bipole in which the sheared core field builds

up and explodes. It is anticipated that the needed improved vector magnetograms, along with simultaneous

high-resolution images of the chromosphere, transition region, and corona, will be provided from space by the

Solar-B Mission presently being developed by Japan, jointly with the United States and the United Kingdom,

for launch 2004.
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Figure Captions

Figure 1. An ejective filament eruption exploding out of an active region near the limb. The expanding

filament magnetic flux rope is seen to have overall twist and complex substructure. At this point, about 10

minutes into the explosion, the filament flux rope has increased in volume by a factor of_ 1000. This

photograph is an H-alpha filtergram (from Big Bear Solar Observatory); it shows plasma in the erupting

filament that is at chromospheric temperatures (5,000 - 10,000 K).

Figure 2. A large filament ejectively erupting from a quiet region on the limb. The many long striations show

that the filament material is strung in a twisted magnetic flux rope. This image is a He II 304 A

spectroheliogram (from the Naval Research Laboratory's extreme ultraviolet spectroheliograph on Skylab); it

shows plasma at transition-region temperatures (-- 80,000 K).

Figure 3. A confined filament eruption in an active region. In this 20 minute sequence, the filament core field

untwists and expands as it erupts to become a magnetic arch in the interior of this overall bipolar active region.

The active-region's oplx_site-l_larity sunspots are seen at opposite ends of the erupting filament and final arch.

These images are blue-wing H-alpha filtergrams from Big Bear Solar Observatory.

Figure 4. The filament flux rope in the core of the coronal mass ejection from a large quiet-region ejective

filament eruption. The ejecting magnetic field, which is traced by and carries the ejecting plasma within it, is

seen in the act of exploding out through the corona and into the solar wind. The occulting disk extends half a

solar radius above the limb. This white-light image is from the High Altitude Observatory's coronagraph on

the Solar Maximum Mission.

Figure 5. Three-dimensional sketches of the magnetic field before and during filament eruptions. The dashed

curve is the polarity neutral line in the photosphere. The diagonally-lined object in the upper left panel is the

pre-eruption filament; for clarity of the eruption of the core field that carries the erupting filament material, this



materialisnotshowninthe other panels. The gray areas are chromospheric flare brightenings. The ragged

arc in the background in the chromospheric limb. Early in the eruption, reconnection occurs in the sheared

core field in or under the filament, as in the upper fight panel. In ejective eruptions, after the filament flux

rope forms and ejects, the ejected envelope field of the pre-eruption arcade is wrapped around the filament core

flux rope and forms much of the surrounding expanding coronal mass ejection bubble that envelops the

filament core rope, and the stretched legs of the envelope field reconnect to form the growing coronal arcade

rooted in the separating chromospheric flare ribbons, as in the lower right panel.
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Abstract

Solar Prominence Eruption

The prominence that erupts in a prominence eruption is a magnetic structure in
the chromosphere and corona. It is visible in chromospheric images by virtue of
chromospheric-temperature plasma suspended in the magnetic field, and
belongs to that large class of magnetic structures appropriately called filaments
because of their characteristic sinewy sigmoidal form. Hence, the term "filament
eruption" is used interchangeably with the term "prominence eruption". The
magnetic field holding a filament is prone to undergo explosive changes in
configuration. In these upheavals, because the filament material is compelled
by its high conductivity to ride with the magnetic field that threads it, this material
is a visible tracer of the field motion. The part of the magnetic explosion
displayed by the entrained filament material is the phenomenon known as a
filament eruption, the topic of this article. Figure 1 shown a filament eruption in
progress, exploding up into the corona.

This article begins with a description of basic observed characteristics of filament
eruptions, with attention to the magnetic fields, flares, and coronal mass ejections
in which erupting filaments are embedded. The present understanding of these
characteristics in terms of the form and action of the magnetic field is then laid
out by means of a rudimentary three-dimensional model of the field. The article
ends with basic questions that this picture leaves unresolved and with remarks
on the observations needed to probe these questions.


